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1. INTRODUCTION

The positioning of nulls in an antenna array field pattern is essential to
the performance of the antenna, in being capable of blocking interference.
The null placement must be acnieved in such a way that the field pattern
in other directions is not adversely affected.

One of the most efficient methods of null placement is by perturbing only
the phases of the array elements. kap4T- present3two approaches to the
placement of nulls by phase perturbation. The first is a least squares
method based on exact or approximate null placement, applicable to one-
dimensional arrays and extendable to two-dimensional arrays, developed for
real quiescent patterns which apparently allows polygonal arrays (in this
study, octagonal arrays) to be considered. Toe second is a minimax method
in one or two dimensions based on null placement, which readily permits
the omission of failed elements and which involves only the perturbation
of selected element phases or amplitudes. <o. j* ,

We believe that these two app'oaches can provide between them a versatile
choice. The least squares method is extremely efficient, the number of
parameters being simply the number of null constraints, but :il antenna
weights need to be perturbed. The minimax method is much more expensive,
since all antenna weights are parameters, but often only a small number of
weights need to be changed. Both approaches are fairly robust. The least
squares approach apparently permits polygonal arrays to be adopted, and
probably more general geometries and configurations of failed elements
might be adopted. The minimax approach is based on a very general
optimisation algorithm and therefore in principle permits rather wide
ranging specifications of constraints to be imposed by the user.

Both approaches are still under develooment; the theory is incomplete and
algorithms have not been fully tested. In particular no a priori
guarantee can be given that the least squares technique will work for any
given polygonal array, and at present it cannot be guaranteed that the
minimax algorithm will always converge or that it will lead to a minimal
number of phase changes. Since the current AFOSR research grant is not to
continue for a second year, as originally planned, it will not be possible
to complete this work under AFOSR support during the coming year.
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2. PHASE-ONLY NULLING BY LEAST SQUARES YThODS IN ONE DIMENSION

We consider a linear array of N isotropic elements as shown in figure i.

The field pattern is given by,

N idnu
PO ( u ) = a n e

n=1

th
The weight a is the complex excitation of the n element. The phasen

reference is taken to be the centre of the array, hence the weights C

are given by,

dn= (N-i) -(n-i) - -dN-n+l , n=1,..N

and

u = 27d sine,

where A = wavelength,

d = interelement spacing,

e = angle subtended with the normal to the array.

The interelement spacing is taken to be half the wavelength throughout.

d

N N-I N-2 3 2 I

Figure I Geometry of the Array.
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We require a set, 0 n n=1,..N of phase perturbations which impose nulls in

required locations whilst retaining the characteristics of the quiescent

pattern. Let uk , k=1,..K, be the directions in which nulls are required,

then to obtain n , n=i..N, w, minimize the integral of tne square of the

discrepancy between the perturbed pattern and the original pattern, which

is readily shown to equal

N

F c a (e n 
- I)2, (2.1)

n= n n

(Cn are assumed to be real and positive). To impose the nulls in the

required locations the phase perturbations must satisfy the following

constraints,

a ei neidnuk =, k=1,..K.

n= n

(2.2)

The problem is nonlinear in general and cannot be solved analytically, but

numerical solutions can be obtained using nonlinear programming.

We consider the case when the quiescent pattern is real, and hence the

element weights are conjugate symmetric,

a l a*, n=1,..N;aN-n+1 n'

in this case it can be shown (Shore [1984a]) that the required phase

perturbations are odd-symmetri,

N-n+1 : n" (2.3)



Writing the coefficients in !;-P fo rm

a n= la fe dns

then due to the odd symmetry of the pertubaztions 0 ,P and the roeffici'ents

d ,P n=1,..N, the constraints given in equatIon (2.2) can be writt-en,

N
c. 7 aI Cost ( dD + u - } k1.

K -. n n n k s
n=

(2.4)

The objective function can, be rewritteIn in the form,

N
F I c la j(os ).(2.5)

Given the objective functio-n ~,equaticn (2.5) and teconstraintsz,

equation (2.4), we define the Lagrangian L as follows,

K
L = F- A k (2.6)

where the coefficients A k9 k=1,..K are (real) Lagrangi'an m-iltipliers. A

necessary condition for the perturbations to locally minimize F subject

to the constraints C k=0, is that the partial derivatives of L with re3Dect

to the *,be zero. Hence a necessary condition for there to be a mnimum

is that

K
3F - I X< k 0,' n=i,..N. (2.7)

3 k=1 n

Differentiating F and C kwith respect to 0 , say, gives,

~F 2c~apI ~ ,.2:(2.8)

and
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= -1apIsin[p dp( k - u,)] (2.9)

p p=1,.N,

k=1,..K.

Substituting equations (2.8) and (2.9) int, (2.7) gives,

K

2cr, apiz sinkp I - .JapIsln-LT +I 1
k-1

A little algebraic manipulation gives p n thie form

K
tan -p - (2.10)

K
2cnlanl + (

Comparing this form for the phase perturbations 0p with that given by

Shore [1983], it is clear that the coefficients which Shore refers to as

the 'beam cefficients' are, in this case, the negative Lagrangian

multipliers. (In Shore because of the slightly different form given for

the *n, n=',..N, the coefficient: are actually the negative Lagrangian

multipliers divided by two.) This is the case only when the pattern is

real, and hence we can take advantage of the symmetry in the coefficients

ensuring the constraints are real.

The unknowns in the minimization problem are Xk' k=l,..K , the problem

size is dependent upon the number of constraints K, rather than the number

of array elements N. This is clearly advantageous as the nurl' " of

elements is generally much larger than the number of constraints required.



At present the problem is solvea by using a NAG routine (EV47DF) wncn

employs a sequential quadratic programming algorithm (SQP) (see Gli,

Murray and Wright [198i]). The routine requires an initial estimate fzr

the solution and routines to evaluate the objective function, constraints

and their derivatives with respect to the coefficients.

The results given in table 1 are for a problem in which there are -.

antenna elements, cn = la 1 = I, n=1..N, and the quiescent beam d ....

u = 0. The null is located at e, =0.43633 (-ads) and the tolerences K

levels required by the routine were set to le-lO. This example is taken

from Shore [1983], and as stated previously the 'beam coefficients' 'n

the formulation presented here are twice those of Shore and opposite -7

sign, but the resulting weight perturbations are the same.

2.1 Linearization

If the phase perturbations are assumed small, then we can employ the

following approximations,

tan(O) 0,
and in 1

e +i~n

n

The weight perturbations w = a (e n -1) can then be approximated by
n n

w= ian~n (2.11)



This form for the welghsta allo:ws us to rewr:te t.'e cancella-7tiof pattern,

in terms of the new coefficients, as tne sum of t~io beams

id (-[2u*u,,P id(u-u,)] (2.12)

where, 
k1 n11

K

c= 2c~ I ±d " ,OLd~uK
n n -lani k=-,kcsLni

One beam is in the d:rection of the recuired null1, wincancelz the

original pattern, and the seco:nd is in the symmetrical l-cation with

respect to the main beam; which, leads to an enhancement of the pattern a

this point. Pattern enhancement occurs in th-e exarole described atove ant

is illustrated in fig*ure 2, tn-e null at; u. = C-4, 633 (rads) is reflected

by pattern enhancement at u =-0.43633 (rads).

It should be noted that if we can make the a:zproximatiz:ns for 0n and the

weights as shown above, and If the coefficients X. are small relative to

2, with cn Jan1 = 1, then by neglecting any contributions from other

cancellation beams at U=uk, we can obtain an estimate for the coefficients

as follows; the cancellation pattern can be approximated by

Ap(uk) N x Ak k=l,.
'4

and since by definition wri have

Ap(u.k) =- PO(uk)

then the coefficients can be approximated by

Xk = P0(U k). (2.13)
N

hAK- 
mom



Table 2a shows the results when ns.... are .lacea a: 6 = 0.5,556, 0.65575,

0.71887 (rad), the approximate coefficients in this case are -0.12646,

0.11923, ana -0.11349 respectively, which are clearly of the same order as

the calculated values. However, table 2b illustrates the effect of

imposing beams close together. As locations of nulls appr? ch eacn other

they have a greater influence on each other and the coefficients are no

longer objectively independent. This is also true when imposing

additional nulls close to locations symmetrical to the original nulls.

2.2. Symmetrical Nulls

It is not possible to synthesize nulls at symmetrical locations using the

linearized form and approximation to the weights. (A proof is included in

appendix I for completeness). When placing symmetrical nulls no

assumption can be made about the size of the phase perturbations. Shore

[1984b] considers the problem of symmetrical nulls, and concludes that it

is always possible to achieve symmetrical nulls in a linear array pattern,

but it may result in interference patterns. We expand these ideas here

and show that in some cases it is not possible to place symmetrical nulls

using this method.

If we consider the constraints and the 0n for symmetrical null locations

uk = ±u*, assuming us = 0, we have from equations (2.4) and (2.10);

N
C1  I j cos(p n + dnu*) = 0,

n=1

.. .. Jk - - .AL - - | I



(2.14)
N

C2  I cos(n - dnu*) = 0,
n=1

and

tanon = sin(dnU(!-) (2.15)

2c janI + cos(dnu*)(XI+X 2 )

Using equations (2.14) and (2.15) we would like to find the conditions

which specify whether there are an infinite number cf solutions, no

solutions or a unique solution. Shore 1984b] states that, provided that

the phase perturbations are not restricted to be small, nulls can be

imposed at locations symmetrical about the main team; this is not always

the case and can eas:ly be proven. Taking the case when cn = janj =

with 6 = 1T/6 (rads), u* = rsin8 - 7/2. From equation (2.15) we have

tan:[ sin(da r/2)(X,_-X 2 )_ n=l,..N. (2.16)

2n+ cos(dn/2)( 1 +A-

When dn is even, sin (dni/2) = 0, and therefore n = t, t is an integer;

when dn is odd, cos(d n /2) - 0, and therefore n ± tan-1 (A1-x2)/2.

The terms in the summation of the constraints given by equation (2.15)

are:

i) for even dn , cos(+n±dnn/2) cos(tlT) + 1

(ii) for odd dn , cos(n±dn7/2) = cos(T±7/2),

where T = tan- 1(x -A2) /2. The summation of the terms resirlts in the pair

of equations
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where k is a non-zero integer. This leads to the equations,

sinT = + 2k

N-1

which indicates that the constrainzs are two parallel lines and thus can

never both be satisfied. In this case there is no solution to the

constrained minimization problem. (Here it is assumed that (N-1)/2 is

odd, however the result is of the same form if (N-1)/2 is even).

In general there is a solution to the constrained minimization problem and

the amount of interference whicn occurs is dependent on the posit
:on of

the null relative to a null in the quiescent pattern. Figure 3

illustrates this relationship by placing nulls at intervals between

quiescent nulls of a 41 element array.

There appears to be a relationship between the optimal coefficients and

the unperturbed pattern value but we have been unable to establish that

relationship at present.

2.3. Increasing null width by Higher Order Constraints

Since the placing of nulls at locations close together results in

cancellation beams interference, as illustrated in the previous section,

it may prove wise to employ alternative methods for increasing the width

of a null.

Consider the constraints

d Pa(Uk) - 0, k=1,..K (2.17)

duv V-0,..M

tAOL



W ner e Uk< ;dnu i P t. c - :i e~ n~ ", r 'rnc~ - o r So

Previously we have cons4.zerec v= ), ftowever, by incluc-iig rhgner c:R

derivatives, the null width i broadened. This was il lustrated for null

synthesis with phase end amplitude perturbations by Steyskal [19827

Here, we investigate the use of highner order constraints in the context. of

phase-only nulling.

Clearly now the total number ofcntansis P-K(M+1), and they are

given by

N
= ) dQ~ia~jcos,, d (uu 5)(2.18)

for even v,

and
N

C I (dv larj sin Cin - d 0- )J(2.19)
p n-1

for odd v.

The Lagrangian is now of the form
P

L -F - , ACP
P-1

and again the cond-ition for d mi~nimum is
P

aF - I x P o (2.20)

30n P-

From equations (2.18) and (2.19) the derivative of the constraints are

given by:-

=- - an (dnY q~ [ n + dn(uk-us)] (2.21)

for even v,
and

Z-P Jn~n) o t dn (uk-us)] (2.22)

for odd v.

From equations (2.9), (2.20), (2.21) and (2.22) we have

K M
2cnjan~i~ X (d )V sin +d

nkl~nn -i 10 n Itn + n(uk-us)]

step 2

K M

k+i 1~ X~ k~~~ Cos 1 n+dn(ukus)J,

step 2
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where kv = (k-1)(A1)(-i). After a litte algeora.,o ranl:pua-aor we

obtain,

K M
-7 1 Xk (dn )'Sndn(Un-us) - + (dn)V'OSdn ~
k=1 v0,2.. k=1 v I,3..

step 2 step 2
tan On 

d 
2K M K M

2C lnl + I I kjdn V d (uk-'-s-)  -K' n ri k (n) nd (k-'s )

k= v 0,2.,k=1 V= , .

(2.23)

If v = 0 then (2.23) reduces to equation (2.7).

The problem can be solved in the same manner as previously except now

there are K(M+I) variables instead of K. The method used to solve tne

constrained minimization problem requires derivatives of both the

objective function and the constraints, the equations for these are Kiven

in appendix II.

2.3.1 Numerical Results

The effect of including higher order constraints is illustrated in figures

4, the corresponding coefficients are given in table 3. Figure 4(a)

illustrates the quiescent pattern, with 31 elements and u =0 and
S

an-1 n=1 .... N. Figure 4(b) illustrates the pattern with a zero order null

located at uk 0.3, the null is indicated by the vertical line. Figure

4(c) and (d) illustrate clearly how the null is broadened by the addition

of higher order nulls, with a first order and second order null

illustrated respectively. It is evident from the coefficients in Table 3

that in this example the original beam coefficient does not vary greatly

with the addition of higher order constraints. However the whole pattern

is affected by the higher order constraint, resulting in some amount of

pattern enhancement on the half range symmetrical to the null location.



14

3. PHASE ONLY NULLING BY LEAST SQUARES METHODS IN TWO DIMENSIONS

3.1 Notation

For a two-dimensional planar array the phase equation is of the form,

eki L d x WXk u + d y wy v (3.1)

k=l..Nx, Z=l,..Ny,

and the resulting field pattern is given by

Nx Ny

p an ,m e (3.2)

n=1 m=1

Here

Nx  = number of elements in the x-direction

Ny = number of elements in the y-direction
wx k  = k-(nx 1)/2 ,  k-1,..N x

w y Z - Z- ( N y + 1 ) 1 2 , Z -1 ,. . N y

k,i or m,n = the reference coordinates in the x,y plane

dx~dy - element spacing in the x,y directions respectively

anm complex excitation of the n,mt h element

u,v = positions in the coordinate system shown below.

and u - sin t cos *, v = sin * sin p,

where the angles * and are as illustrated in figure 5.



We assume that the element spacings d. and dy are half wavelength.

We also assume that the quiescent pattern is real, and in that case

the coefficients an,m exhibit a symmetry about the centre element of

the array. We shall return to this point later.

3.2 A Two-Dimensional Planar Array

We require a phase change in the element coefficients which will

result in the placement of a null in a given direction whilst

replicating the remaining field pattern.

Given a set of points {Uk,Vk} k=1,..K at which nulls are to be

placed, then we require

P(Uk, Vk) = 0 k=1,..K '3.3)

Let us consider the geometry of the array. If, given a grid of

elements, the main beam is assumed to be central to the array, (that

is the weights wxn and wy m are as defined above), then the phase

equation at each element is as illustrated in figure 6. (The example

here is for a 5x5 grid, but clearly the basic pattern is the same for

a general grid).

If the elements are numbered in the order illustrated in figure 6, it

can easily be shown that in order for the field pattern to b: real,

the complex coefficients am,n must be conjugate symmetric about the

central element (in this case element number 13).

Ordering the coefficients in this manner, as a vector, we have

am,n .a(j) j = m(n-1) + m (3.4)

j=I,..N

N =N x x Ny.



We can now consider the field pattern, given in (3.2) in a vector

form,

N

p = aj ei j  (3.5)

j=1

and in erfect we now have a one-dimensional problem.

If the unknown phase perturbations required to place a null (or set

of nulls) is denoted by {1j} j=l,..N, then from equation (3.3), we

have the null constraints,

N

a e i j e48k = C k=l,..K (3.6)

j=1

To ensure that the perturbed pattern replicates the quiescent pattern

everywhere but at the null location, we minimize the sum of squares

of the absolute element perturbations

N

F = J ej [ai(e i C - i (3.7)

j=1

where cj j=I,..N are positive weights.

Owing to the conjugate symmetry of the coefficients, this can be

written in the form,

n

F = 2 1 cj laiI2 (1-cos8j). (3.8)

j=1

The null constraints given in (3.6) can also be re-written as



N

0 = Ck = Z a. k

n

I J ajJ Cos j + 9 k ]  k=1,..K (3.9)

j=1

As in the one-dimensional problem, we form the La5riigiai

K

L = F - I XD CD, (3.10)

p=1

and the problem has a 'beam space' solution just as for the one-

dimensional problem. F-om (3.8), (3.9) and (3.10) we can obtain the

relationship

K

- I sin [dp(Uk-Us)]

k=1
tan (oP) = (3.11)

K

2 Cnlan1 + X, cos [dp (Uk-Us)]

k=1

Details of the algebra behind this relationship are as discussed in

§2.

At this stage it is a simple matter to show that all the results for

the one-dimensional case hold in two dimensions.

Clearly the number of variables in the optimization problem, namely

that of minimizing (3.8) whilst satisfying the constraints given in

(3.9), is reduced from the number of elements Nx XNy to the number of

constraints K, by utilizing (3.11).
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Just as for the one-dimensional array, in some cases there is an

enhancement of the pattern in a direction symmetric to the location

of the null. Examples of this phenomenon will be illustrated in the

numerical results given below.

3.3 Polygonal arrays

Billam (1985) poses the question of the suitability of phase only

nulling for an octagonal array of elements.

It is possible to embed an octagonal array of elements in a

rectangular grid; as shown in figure 7. All the elements of the

rectangular array which lie outside the octagon are clearly in

symmetric positions about the central element. By putting the

initial weights of these elements to zero and ensuring that they are

eliminated from further calculations, it is possible to simulate the

problem of null placement in an octagonal antenna field pattern.

This method of embedding can in principle be extended to any

polygonal geometry of array.

We have developed computer routines for the embedding of an octagonal

array into a rectangular array, and the placement of nulls by phase

perturbations to the octagonal array elements.

A listing of the embedding routine, which embeds the octagonal array

into a suitable rectangle by setting the appropriate weights to zero,

can be found in appendix III; it is quite self-explanatory. In the

section on numerical results below, we illustrate the difference in

the quiescent field for the octagonal and the rectangular arrays,

show how single and multiple nulls can be achieved for each, and the

effect on other areas of the pattern.

. .. .. ..
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3.4 Numerical Results

For the following results, the optimization routine used to solve the

constrained minimization problem was taken from the Harwell library

of optimization routines (VF13). The method is based on a quadratic

programming technique and is described in Powell (1982) and

Chamberlain et al. (1982). Linear approximations are made to the

non-linear constraints, and hence the placement of nulls at symmetric

locations would not be posible using the routine. (fac R2.2 above).

The routine requires the evaluation of the objective function and

constraints, plus their first derivatives.

The examples below illustrate single and multiple null placement for

a rectangular antenna array and an octagonal antenna array. Figures

8(a) and 8(b) illustrate the quiescent sinc pattern for both the

rectangular array and the octagonal array respectively with a grid of

13x13 elements. The octagonal array, which is embedded into the

1 3x13 grid of elements, has 5 elements along each face, and clearly

the resulting pattern is more circular in shape.

For each case we have placed a null at u = 0.28, v = 0.32, with a

tolerence of 10- 8 allowed on the constraint, and an initial estimate

of the beam space coefficient taken as 0.1. Figures 9 and 10

illustrate the resulting perturbed patterns and the difference

between the perturbed and the quiescent pattern for a rectangular

array and an octagonal array respectively. The coefficients for the

perturbed pattern are given in each case in tables 4 and 5,

respectively, (only the first half of the coefficients need be given,

owing to symmetry). It is clear from these tables that a null placed

in the octagonal pattern results in a larger absolute beam

coefficient, and this in turn results in a higher average

perturbation but leads to a deeper null.

On inspecting the graphical results, it is clear from the difference

patterns (i.e. the differences between perturbed and quiescent

patterns) that the octagonal pattern is affeeted slightly more
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The least-squares method applied to both rectangular and octagonal

array phase-only nulling problems has always given good results in

the cases considered so far.



4. NULL PLACEMENT BY MINIMAX METHODS

Given an initial far field pattern

N

Po(u) = an e 

n=1

the perturbed pattern becomes

N

p(u) = x_ e dru2)

n=1

Denoting the discrepancy by e(u) then

'I

e(u) = R(u) + iI(u) = (an-x )e idn u  4

n=1

For amplitude-only perturbation xn/a n is real (and so is an), and for

phase only perturbations

Xn/an = eion

where On is a real parameter.

4.1 Amplitude-only Nulling

Although expensive to implement, null placement is possible by very

few perturbations to real weights. Adopting a minimax criterion, we

require to find the parameters xn (n=1,...,N) which minimise Ielj-,

where



fel = max le(u)i

max (R2(u) + I2(u))2

subject to the constraints

-E {Re Ip(u)I , Imlp(u)I} S E

for u = u i

(where ui are discrete locations at which "near-null" placements are

to be made).

The expression (4.4) is nonlinear in the unknown parameters xn , but

may be linearized, with a relative loss in accuracy of at most /2 by

being replaced by

le : = max [maxi IR(u)l, II(u)I}]

[See Barrodale, Delves and Mason (1978)]

The problem is now an overdetermined linear programming problem and

can be solved by a standard routine such as that of Roberts and

Barrodale (1980).

Figures 13 to 15 show 3 model 41 element quiescent patterns, based on

Sinc, 20 dB Taylor weighted and 30 dB Taylor weighted patterns,

respectively.

In Figures 16 and 17 we have given examples of null placement for the

41 element sinc pattern. Note that the weights are symmetric, thus

reducing the dimensions of the problem by half. Also, because the

perturbations are amplitude only, the pattern is symmetric about

boresight. In Figure 16, to achieve a null interval [.7, .73], only



S pairs of weights are changed :'rom their qaiescent values
Figure 17 to achieve d ,lull interval .0', .08] Just 2 pairs of
weights are changed from unity.

The technique described here (for asplitude-onlv changes) -as alreacy

been discussed with different numerical examples, b y Mason, 'ilde and

Dpfer (1987).

4.2 Phase-only Perturbations

For phase only perturbations, the constrained pattern is

N
e din (4.5)

n=1

and

N N
Id u _ idnu+a n

E(u) an e i a ne id

n=1 n=1

id u id u+6

= _' an ( n

n=1

= R(u) iI(u)

where

N

R(u) = 7 an [cos(dnU) - cos(dnu + a (4.6)

n=1

N

I(u) = an [sin(dnu) - sin(dnu + 8n)] (4.7)

n=1

&A Lm 
o



Here we minimise

Ilel* = max ,max( IR(u) , II(u)I)

u b  < u i  < '4.8)

for a discrete set of u, (i=1 ... m) covering the range of

minimisation, subject to the constraints

- £ E (u) <

b' F
ub u a,U"Ib ]

< I(u) C

for a discrete set of u. i=rn,m+Im,...,m+p covering the range o"

nulls.

The minimization 4s achieved ty imposing inequalities

-z <  R(u i ) S ' (4.9)

-z <(u i ) <- z

and minimising z (in place of IIeII*).

The inequalities (4.9) give

N

-Z <.  an cos(dn u i ) cos(dn ui + 8n) )

n=1

and (4.10)

N

-z . [ an (sin(dn ui ) - sin(dn ut + 8n) z

n=1

which become:



a cos(dn u;) an cos(dn ai n) z

n=1 n=1

N N

on cs(dn ui) > an cos(d n 'I + 9n -1

n=1 n=1

4.11)

N N

Sn=1 n=1

N N

an sin(d n u1 ) ' an sin(dn u, + e -z

n=1 I

Hence the oroblem has 2D+4m nonlinear constraints, 1+1 variables

(8n(n=1,....N),z) and a linear objective function z. 7or its solution

we have used the NAG sequential quadratic programming routine EO4VDF,

as discussed in §2 above.

We have tackled a wide variety of problems, some of which are shown

in Figures 18-22. The tables 8-11 give numerical information which

corresponds, respectively, to these 5 figures.

For a symmetrically weighted array, if we limit the phase changes to

[-7,7r] then this results in conjugate symmetric perturbations as in

the least squares approach. However, it is interesting to note that

on restricting the phase perturbation to [0,271, we produce a sub-

optimal solution but, by the nature of the optimization procedure, few

of the elements undergo changes. This is illustrated clearly in

Figures 21-22, for nulls .22, .24, .26, .28; here conjugate symmetric

results are obtained in Fig 21 but all weights are changed, while

non-symmetric results are obtained in Fig 22 with just 10 changes to

the 41 weights.



4.3 Loss of elements

The loss of elements in the array can readily be counteracted by

applying phase changes to the remaining weights so as to approximate

the original perturbed pattern. In the algorithms of §4.1, 4.2, we

simply set the failed elements to zero and minimize with respect to

the remaining elements.

This technique is illustrated successfully in Figures 23-26. in

Figure 23(a) is shown a perturbed pattern with no failed element,

obtained from a 20 dB Taylor weighted pattern, to achieve nulls in

[0.7, 0.72]. In Figures 23(b) - 23(d), one, two and three elements

have failed and the resulting pattern is successfully adjusted by the

minimax algorithm.

4.4 Two-Dimensional Arrays

The techniques of 9§4.2, 4.3 are equally applicable to two-

dimensional arrays. However, the minimization problems can become

rather large in that case, and so more efficient but algebraically

complicated techniques such as that of Streit (1985) should probably

be adopted for processing the linear inequalities.

Am . - - -a Asuat-



5. SUa&RY OF PROGRESS

The proposed program of work for the 2-year contract was as follows:

(i) To test a constrained least squares method for adapting a planar
phased array to known interference directions

(ii) To test a constrained minimax method analogous to (i)

(iii) To develop and test new algorithms for improving (i), (ii), based on
novel research ideas.

(iv) To extend the method of Thompson (1976) and other related methods for
designing adaptive planar arrays and to develop sound nonlinear
optimization techniques for the necessary minimization procedures.

Substantial progress was made in the first year of the contract on tasks

(i), (ii) and (iii) as follows:

A modified version, based on Lagrange multipliers, of Shore's beam space

representation method for least squares phased array adaptation was

introduced. In this implementation the Lagrange multipliers were in fact

the beam space coefficients. The method was extended to planar arrays,

and also successfully applied to octagonal arrays. in addition multiple

nulls were shown to be readily introduced, and formulae for corresponding

Lagrange multipliers obtained. Symmetry was considered, and problems of

pattern enhancement at positions symmetrical to nulls were studied; it was

shown that it is sometimes not possible to place symmetrical nulls in beam

space-type algorithms.

We also reported on work carried out without AFOSR financial support on

minimax methods for null placement in antenna patterns. We noted that

algorithms, analogous to those of Mason, Wilde and Opfer (1987) for

amplitude-only nulling, could be applied to the phase-only nulling

problem. If phase changes were restricted to ranges [-iT,7] then the odd

symmetry of the problem was adhered to. If phase changes were restricted

to [0,21T], then symmetry was not achieved, but very few phase changes were

required in this case. It was also noted that failed elements were

readily catered for in this type of approach.

The work carried out so far still requires further theoretical development
and numerical testing, before we can guarantee the full efficacy of the

techniques discussed. However, the numerical results produced have been

consistently good, and so we see considerable oromise in the ideas

introduced.
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7 APPENDICES

7.1 Appendix I

If it is assumed that the phase perturbation wilI be small, so that we can

use the linearized form of the weights given in equation (2.11), then, for

symmetrical nulls at ±uk , the constraints given by equation (2.2) are:

N
ani neidnUk = 0

n=1

and (1.1)
N
Z aneizne-dnUk = 0.

Putting e1~n = 1 + i n  equations (T.1) become,

N
idu-i an nu ' O = (Uk)n=1

and (1.2)
N

-i I anne- idnUk = pO(uk)
n=1

Here pO(uk) is the value of the unperturbed pattern at uk. Clearly the

left hand sides of equations (1.2) are complex conjugates and due to the

odd symmetry of *n and dn the resulting equations are inconsistent.

Therefore it is not possible to gain a solution using the linearized form

for symmetric null placement.



7.2 Appendix I!

Given,
N

F - 2 7 cn , 2 coso.,
n=i

the:. th.- d-r'ivativoz is given by,

N

2 nla.In n21 -=, ..P. (11

a A p n=1

N
Also, f3 l s -*-- -n 31 .

px n~n 'C( 3 p 1..P. (11.2)

and isis gi'ven by equations (2.211) and (2.22).

Fr;:m equz'. (2.213) -,;c have,

K M K M
-Z Z xkv(dn)'sin~dn 'n- +s 1 7 +kv (dn )vcos~ dn(uk-US)l
k-1 v=0,2.. k1l V=1,3..

n tan 1I step 2 K step K ~ X v d ~ s n d ~ k u

2nlanI + II Xkv(dn)vcos[dn(uk-us)] -k n'-'~nu-s
k=l 0,. k=i v=1,3..

(11.3)

Pu.tting Yn = tan n (11.14)

t hen

-o d __ 2 ,- (11.5)

ax dyn aX

and =CO5
2P n* (11.6)

Denoting,

Vn = 2cnjanI I~ I Ak(dn)vco)S[d (u -u (dn )'si n[dn(uk us
k even v k odd v



and

- 7 Akvdn)Sl dn(Jkos~U v (du )V 0 0

k even v k odd v

then

s+ (n~ (11 u ~ (u- i5Y L-1- Yi n k- 3d)snd(kU)] + (n) o~n(UkUs) 2n

for even v, (11.7)

and

= (n)vcos[dn (uk -s ) - (dn)Vsn[dn (uk-Us) n

n n for odd v (11.8)

Equations (17.7) and (11.8) together with (!.6) (2.21), (2.22), (-.2)

and (:I.1) give all the required derivatives for the objective fancti:on

and constraints.



7.3 Appendix III Listing of Routine for Setting non-Octagon weights

to Zero.

SUBROUTINE WEIGHT(A, C, NELEM, NADD, NSOCT, MAXELT, POLY)
C
C IN THIS ROUTINE THE WEIGHTS A AND C ARE SET ACCORDING TO
C THE TYPE OF ARRAY, RECTANGULAR (R) OR OCTAGONAL (0).
C NELEM IS TOTAL NUMBER OF ELEMENTS IN RECTANGULAR ARRAY.
C NSOCT IS NUMBER OF ELEMENTS ALONG EDGE OF OCTAGONAL ARRAY.

C NADD IS NUMBER OF ELEMENTS ADDED TO EACH SIDE OF OCTAGONAL

C EDGE TO EMBED IT INTO RECTANGLE.
C

IMPLICIT DOUBLE PRECISION (A-H, P-Z)
CHARACTER*1 POLY

C
DIMENSION A(MAXELT),C(MAXELT)

C
C FIRST SET ALL WEIGHTS TO 1, FOR SINC PATTERN
C

DO 10 JELEM 1, NELEM

C(JELEM) = 1.0dO
A(JELEM) = 1.0dO

10 CONTINUE
C

IF (LIT.EQ.'R'.OR.LIT.EQ.'r') RETURN
C
C NOW PLACE ZEROS FOR OCTAGONAL
C

DO 20 JELEM = 1, NADD
A(JELEM) O.ODO
A(NELEM-JELEM+I) = 0.ODO

20 CONTINUE
C

NSTART = NSOCT +NADD
NUMAD = NSOCT
NZERO = 2*NADD -1

C
DO 25 INUM = 1, NADD

DO 23 JELEM = 1, NZERO
NTJ = NSTART + JELEM
A(NTJ) = 0.ODO
A(NELEM-NTJ+1) = O.ODO

23 CONTINUE
C

NUMAD = NUMAD+2
NSTART = NTJ+NUMAD
NZERO = NZERO -2

25 CONTINUE
C

RETURN
END
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Fig. 5 Coordinate system for 2-D array
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Fig. 8(a)

Field Pattern for Rectangular Array; 13x13 elements
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Fig. 9(a)

Null Placed at u=0.28, V=0.32

Fig. 9(b)

Perturbed-Quiescent pattern for Rectangular Array



Fig. 10(a)

Null placed at u=O.28. v=0.3
2

Fig. 10(b)

Pedturbed-Ouiescent pattern for Octagonal Array
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Fig. 11(a)

Nulls placed at u=.23.v-0.3 2 cind u--.32.v=0. 3 6

Fig. 11(b)

Perturbed-Quiescent pattern for Rectangular Array



Fig. 12(a)

N4ulls Placed at u=O.2s.vO0.
3 2 and u-O.32,v=O.

3 6

Fig. 12(b)

pertLurbed -Ou.esceflt pattern for Octagonal Array
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Fig. 13

Quiescent sinc pattern with 41 elements
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Fig. 14

Quiescent 20 db Taylor pattern with 41 elements and n=6
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Fig. 15

Quiescent 30 db Taylor pattern with 41 elements and n=6
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Fig. 16 Constrained amplitude-only pattern.

Nulls at u=0.7,0-71,0.72,0.173
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Fig. 17 Constrained amplitude-only pattern.

Nulls at u=0.07,0.08
Quiescent pattern - sinc

x-l.000000000 (i=1,...,41) except

X5 =X3 7 r= - 0 .619 0 3 8 8 5

X6 =X36 =-0.99823899

-10 _E

- . . . . ' . . . ' . . k . . . . J . . . . . .-

A M-

-"

/ ]/ , ,- I,;

I I L 'j _ _ _ __ _ _ _

-- 8f -'., 
..



Fig. 18

Constrained phase-only pattern. Nulls at U=0.07 0.08
Phase range [-11,11]
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Fig. 19

Constrained phase-only pattern. Nulls at u=0.4,0.525,
0.65,0.775,0.9. Phase range pigH
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Fig. 20

Constrained phase-only pattern. Nulls at u=0.22,0.24,
0.26,0.28,0.3,0.32,0.34,0.36. Phase range [-II,11]
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Fig. 21

Constrained phase-only pattern. Nulls at uz=O.22,0.24,
0.26,0.28. Phase range [-11,113
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Fig. 22

Constrained phase-only pattern. Nulls at u==0.22,0.24,
0.26,0.28. Phase range [0,2111
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Fig. 23(a)

Constrained phase-only pattern. Constraints over
U=[0.710.72]
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Fig. 23(b) Array element 4 failed
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Fig. 23(c) Array elements 4,11 failed
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Fig. 23(d) Array elements 4,11,21 failed
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Table 4- Results for Rectangular Array with one Null.

Antenna AraZ Phase On lZ Nulijjng

There are 169 elements and 1 contraints.

Constraint 1 is at position .28000 .32000

Initial value for constraint 1 is .10000

Required accuracy is .10000E-07
Optimal Beam Coefficients

.15315E-01

Coefficients for Perturbed pattern
1 .72655E-02
2 .59292E-02
3 -.96710E-03
4 -. 69514E-02
5 -. 64391E-02
6 -. 48876E-17
7 .64391E-02
8 .69514E-02
9 .96710E-03

10 -. 59292E-02
11 -. 72655E-02
12 -. 18904E-02
13 .52129E-02
14 .64921E-02
15 .57311E-17
16 -. 64921E-02 61 .18904E-02
17 -. 69062E-02 62 .72655E-02
18 -. 95252E-03 63 .59292E-02
19 .58716E-02 64 -. 96710E-03
20 .73000E-02 65 - .69514E-02
21 .19186E-02 66 -. 44733E-02
22 -. 52714E-02 67 .27990E-02
23 -. 75111E-02 68 .75111E-02
24 -. 27990E-02 69 .52714E-02
25 .44733E-02 70 -. 19186E-02
26 .76461E-02 71 -. 73000E-02
27 .96710E-03 72 - .58716E-02
28 -. 59292E-02 73 .95252E-03
29 - .72655E-02 74 .69062E-02
30 -. 18904E-02 75 .64921E-02
3i .52129E-02 76 -. 76805E-18
32 .75327E-02 77 - .64921E-02
33 .28392E-02 78 -. 69062E-02
34 -. 45291E-02 79 .18904E-02
35 -. 76387E-02 80 .72655E-02
36 -. 36645E-02 81 .59292E-02
37 .36645E-02 82 -. 96710E-03
38 .76387E-02 83 -. 69514E-02
39 .45291E-02 84 -. 64391E-02
40 -. 52714E-02 85 .00000
41 - .75111E-02
42 -. 27990E-02 Average pertubation .48752E-02
43 .44733E-02
44 .76461E-02
45 .37140E-02 Quisecent pattern at uk .28000 .32000
46 -. 37140E-02 Real -. 64964 Imag = .51033E-15
47 -. 76461E-02
48 -. 44733E-02 Perturbed pattern at uk .28000 .32000
4q .27990E-02 Real .12688E-09 Imag = -. 11861E-15
50 .75111E-02
51 .52714E-02 Null depth = -240.14 DBA
52 -. 19186E-02
53 -. 76387E-02
54 - .36645E-02
55 .36645E-02
56 .76387E-02
57 .45291E-02
58 -.28392E-02
59 - .75327E-02
60 - .52129E-02



Table 5 Results for Octagonal Array 
with one Null.

Antenna Arrays : Phase Only Nulling

There are 129 elements and 1 contraints.

Constraint I is at position .28000 .32000

Initial value for constraint 
1 is .10000

Required accuracy is .10000E-07

Optimal Beam Coefficients
-. 27348

Coefficients for Perturbed pattern

5 .12394
6 .10187E-15
7 -. 12394
8 -. 11639
9 -. 15089E-01

17 .13062
18 19825E-01
19 -. 11491
20 -. 12413
21 -.30019E-01
22 .84914E-01
23 .13698
29 .13496
30 .39176E-01
31 -.10359
32 -. 13022
33 - .44629E-01
34 :72241E-01
35 .13679
36 .74702E-01
37 -.74702E-01
41 .13698
42 .57604E-01
43 -. 90124E-01
44 -. 13449 81 -. 96610E-01

45 -.58757E-01 82 .15089E-01

46 .58757E-01 83 .11639

47 .13449 84 .12394

48 .90124E-01 85 .00000

49 -. 57604E-01
50 -.13698 Average pertubation 

.67559F-01

51 -. 84914E-0153 .13679 
80300

54 74709E-01 Quisecent pattern at uk .28000 .32000

55 -. 74702E-01 Real 9.0426 Imag = -. 25479E-16

56 -.13679 .32000
57 -. 72241E-01 Perturbed pattern at uk 

.28000

58 .44629E-01 Real .98096E-15 Imag = .14154E-15

59 .13022 DBA
60 .10359 Null depth -342.29

61 -. 39176E-01
62 -. 13496
63 -. 96610E-01
64 .15089E-01
65 .11639
66 .90124E-01
67 -. 57604E-01
68 -.13698
69 -. 84914E-01
70 .30019E-01
71 .12413
72 .11491
73 -. 19825E-01
74 - 13062
75 -.10716
76 .11972E-16
77 10716
78 13062
79 -. 39176E-01
80 -. 13496



Table 6 Results for Rectangular Array with 2 Nulls.

Antenna Arrays : Phase Only Nulling

There are 169 elements and 2 contraints.

Constraint 1 is at position .28000 .32000

Constraint 2 is at position .32000 .36000

Initial value for constraint I is .10000

Initial value for constraint 2 is .10000

Reguired accuracy is .10000E-07

Optimal Beam Coefficients
.86483E-01

-. 89406E-01

Coefficients for Perturbed pattern

1 .53802E-01
2 -. 11934E-02
3 - .46955E-01
4 -. 38105E-01
5 .37794E-02
6 .33931E-01
7 .25908E-01
8 -. 49172E-02 58 -. 15846E-01

9 -. 20995E-01 59 -. 20047E-02

10 -. 11646E-01 60 .482S1E-02

it .34537E-02 61 -. 36409E-03

12 .57008E-02 62 -. 27727E-02

13 -. 10019E-02 53 .69819E-02

14 .62571E-02 64 .16175E-01
15 -. 43776E-01 65 .56081E-02
16 -.41216E-01 66 .18598E-01

17 -. 13255E-02 67 .32407E-01

18 .31713E-01 68 .12171E-01

19 .28181E-01 69 -. 13147E-01

20 -. 14293E-02 70 -. 16315E-01

21 -. 20031E-01 71 -. 33453E-02

22 -. 13013E-01 72 .44103E-02

23 .21166E-02 73 -. 18350E-03

24 .56119E-02 74 -. 33739E-02

25 -. 86034E-03 75 .58532E-02

26 -. 75122E-03 76 .16483E-01

27 -. 39847E-01 77 .82735E-02

28 - .43719E-01 78 -. 17961E-01

29 - .64120E-02 79 .32191E-01

30 .29024E-01 80 .15194E-01

31 .29987E-01 81 -. 10800E-01

32 .20832E-02 82 -. 16529E-01

33 -. 18744E-01 83 -. 46347E-02

34 -. 14180E-01 84 .39226E-02

35 .74719E-03 85 .00000

36 .54348E-02
37 -. 70521E-03 Average pertubation = .14419E-01

38 -. 14511E-02
39 .89014E-02
40 -. 45568E-01 Quisecent pattern at uk .28000 .32000

41 -. 11409E-01 Real -.64964 Imag = .51033E-15

42 .25907E-01
43 .31302E-01 Perturbed pattern at uk .28000 .32000

44 .55600E-02 Real -. 19110E-07 Imag = .15856E-15

45 -. 17150E-01
46 -. 15130E-01 Null depth = -196.59 DBA

47 -. 63361E-03
48 .51725E-02
49 -. 53892E-03
50 -. 21284E-02 Quisecent pattern at uk .32000 .36000

51 .80033E-02 Real = .84424 Imag = .34094E-15
52 .15610E-01 

.60

53 -. 16247E-01 Perturbed pattern at uk - .32000 .36000

54 .22414E-01 Real -.20194E-07 Imag = -. 12334E-14

55 .32112E-01
56 .89418E-02 Null depth = -196.11 DBA

57 -. 15275E-01



Table 7 Results for Octagonal Array with two Nulls.

Antenna AraX Phase On ly Nuli ng

There are 129 elements and 2 contraints.

Constraint 1 is at position .28000 .32000
Constraint 2 is at position .32000 .36000

Initial value for constraint 1 is .10000
Initial value for constraint 2 is .10000

Required accuracy is .10000E-07
Optimal Beam Coefficients

-. 59158
.37090

Coefficients for Perturbed pattern
5 .10705
6 -. 17203
7 -. 19683
8 - .73508E-01
9 .62827E-01

17 .14239
18 -. 14722
19 - .20278
20 - .91101E-01
21 .46339E-01
22 .12795
23 .11257
29 .17337
30 -. 11836
31 - .20582
32 -. 10779
33 .29386E-01
34 .11997
35 .11885
36 .37580E-01
37 -. 58779E-01
41 .19944
42 - .86054E-01
43 - .20569
44 -. 12337 79 -. 18386
45 .12141E-01 80 -. 16135
46 .11046 81 -. 39627E-01
47 .12300 82 .74551E-01

48 .52316E-01 83 .1231649 - .45232E-01 84 .88790E-01
50 -. 10985 85 .00000
51 -. 10702
53 .22033 Average pertubation .80078E-01
54 - .51102E-01
55 - .20213
56 -. 13764 Quisecent pattern at uk .28000 .3200C
57 -. 52235E-02 Real 9.0426 Imag = -. 25479E-16
58 .99605E-01
59 .12505 Perturbed pattern at uk z .28000 .3200(
60 .65926E-01 Real -. 46413E-11 Imag = -.46632E-15
61 -. 30714E-01
62 -. 10472 Null depth -268.88 DBA
63 -. 11400
64 -. 46184E-01
65 .72443E-01
66 -. 14530E-01 Quisecent pattern at uk .32000 .3600(
67 -. 19490 Real 4.7164 Imag = -. 11891E-14
68 -. 15037
69 -. 22537E-01 Perturbed pattern at uk z .32000 .3600(
70 .87578E-01 Real -. 58462E-12 Imag = .46453E-15
71 .1250872 .78154E-01 Null depth -286.87 DBA
73 -. 15528E-01
74 - .97679E-01
75 -. 11943
76 - .60697E-01
77 .56321E-01
78 17034



Table 8 Effect of 2 near boresight constraints on 30 db

Taylor pattern. Phase range [-11,11] (Fig. 18)

aEAM REFERENCE AT CENTRE OF 4RRAY

INITIAL PATTERN rAYLJR WEIGHTEO

NUMBER UP EQUAL SIOELUBES 6

OEPTH UF SIOELIBES 30.0

NUMBER 0r ELIMcNTS 41

NUMBER 0 F:rT:Ng5 PCINTS 41

OEPT OF NULL -90.

NULL INTERVAL = 0.o7,0.a8J3

SCALING FACTOR = 1.000

E
1
SI(NULL OEPTH x SCALIN. FACTCR)= .592TE-03

CTOL(ABSJLUTE) = .io00E-05

FtOL(RELATIVz) = .1000E-06

C3NSTRA:NT NUMdER VALUE TIETA
0.0730

2 0.3830 4.59

INTERVAL OF ?P',.A CHAN ES = -P.P,3

J8jECTIVr FUNCTION = 2.577T 13-30
NORM Or liE C!4STRA 'T VZCL.T ION= 1.2902190-)8

NO. OF 17ERATIONS = 19

CPU TIME (S CS) - 1 ,.93,3

0BJECTlit4 Fj Ct:JN 2.677

GAIN -0.33)9

NUM4ER OF P4ASl PSRTURiATI3Ni I1

AVERAGE PHASE P5RTjR5ATIN 2 .30000030

S WEIUHTS PHASI CHANGES

I 0.2t4375373671 -0.45841175413

2 0.272106559d34 -0.249570927309

3 O.2id425713 517 -0.37358595161'E-01

4 0.314481052305 0.164306088971

5 0.3501565i3317 0.350742503194

6 0.3)6397931668 0.513156764071

7 0.450536717321 0.636161908a'6

a 0.508724360(85 0.693381875130

9 0.56825,615102 0.640510731063

10 0.626581810598 0.44088 3z73382

11 0.632261419286 0.160113553'53

12 0.734d54271079 0.114J65339513E-0I

13 0.734412668475 -0.435999224d30E-01

14 0.830863725639 -0.349916940583E-01

I 0.a1J-i2166d15a -0.2881759-1065E-02

16 0.911600909048 0.295i5 727 7)E-0 1

17 0.93565035459 0.50139 51975815-0I

1 0.9683o6198776 0.5 441 1965526E-01

19 0.936Z0743138' 0.44251 5323309E-01

20 0.936i88198007 0.243283195082E-0 1

21 1.0000GO000000 -0.17817 7334543E-15
2z O.936A03)180Ot -0.232831 950ZE-01

23 0.936Z0731d88 -0.44231 5323809-01

24 0.958365138776 -0.544 41955626E-0L

25 0.743565035459 -0.501396197381E-01

25 0.9115009?904R -0.29565972Y7496-01

27 0.873621668153 O.28L7596063E-OZ

28 0.830863725939 0.3&9916940583E-01
29 0.7 4412668475 0.435)99224136-01

30 0.734a54271079 -0.114066339513E-CI

31 0.682261419286 -0.180113553453

32 0.626531810593 -0.440388273382

33 0.5o8254615102 -0.640510TS1069

34 0.50872426048S -0.693381875830

35 0.450336777328 -0.636161908846

36 0.3)6897931668 -0.513156764071

31 0.35015653317S -0.350742503194

38 0.314481052303 - 0 . 1 6 630 0q8971

3 0.238426716517 0.373585951613E-01

40 0.272106559834 0.249570927301

41 0.26437333671 0. 4 6 84 1075486q

AI



Table 9 Effect of 5 widely spaced constraints on 30 db
Taylor pattern. Phase range [-11,II (Fig. 19)

BEAM REFERENCE AT CENTRE OF ARRAT
INITIAL PATERN TAYLOR WEIGMTEO

NUM5ER OF EQUAL SIOELOES= 6
OEPTm u,: S:OELOBES 30.1

NU 1bER OF EL 41N S 4L
NUM4SER OF FITTING POINTS ( .I
OEPTH OF NULL -90.
NULL I TERVAL = E3.100.0.90c]

SCALING FACTOI 1 .000
EPSI(NULL OEPT x SALIN FACTOR)- .59,7E-03
CTOL(AaSQLUTE) .10002-05
FTOL(RELATIVE) .10001-06
CONSTRAINT NUM$ER VALUE THETA

1 0..000 23.58

z 0.520 31.67

3 0.5500 Z0.3k

1. 0. 77 50 50.831
5 0.9000 6- 16

LJrERVAL Oz P-AS3 CHAN.ES t-PIPI]

ExIT E4VOF - OPTIMAL SOLUT.JN F'JUNO.

OBJECTIVE FUNCTION 1.213Z170-31
NORM OF THE CONSTRAINT VIOLATIONS 1 .Z036L90-08

NO. OF ITERATI3NS = 38
CPQ TIME (SEC5) 525.900
O5JECTIVE FUNCTION * .1213
GAIN : -0.13')a
NUMBER CF PHASE PEqTUR3ATIDNS = 41
AVERAGE PASE PERTUR3AT:QN : 0.700)]000

I WEIGHTS PHASE CHANGES
1 0.264375373671 0.602330'12065E-01

2 0.Z72105559334 0.202395009211
3 0.2884Z6719517 -0.8751126i4l87E-01
4 0.3l45-1052305 -0.'560702fgZ85E-01
5 0.3508So5331?6 -0.1o671 27073
6 0.3963179316 0.209489964631
7 0.4505367773Z1 -0.333589401507E-31
8 0-508724350485 -0.900332610994E-01
9 0.5825-615102 0.336021793505E-01

kt 0.6Z6581810593 -0 .677896210-7 3E-0 1
11 0.682261419286 0.12289136248 4
12 0.734354271079 -0.8S8541T94306E-01

13 0.784412668475 0.362378398464E-01
1' O.8JOd63725839 -0. 705272236363E-01
.3 0.873621668158 -0.37713603607TE-O
16 0.9110 96904 0.1-3176434684

17 0.94356503545) -0.13773577842
13 0.9o8566198775 0.253Z9552 2(5E-0 1
19 0.96207-31884 -0.41.189637492E-01
20 0.9465831 ;,O07 0.10;125135364
21 1.00000000000 0.32610209)204E-10
22 0.996588198007 -0 .1212511524)
23 0.986207431384 0 .41138 362942E-01
24 0.9685651 8775 -0.25329552Z246E-01
25 0.943563035459 0.137733TTS11
Z5 0-11.S009i90i2 -0 .14317i4,.4333

27 0.873621658151 0.37713 5910195E-02
28 0.83086375839 0.70527 Z234ZOSE-01
29 0.74442668.75 -0 36371839862TE-01
30 0.73435427107i 0.8886'1794508E-01

31 0.632261419Z86 -0 .Z 891364740
3Z 0.626561810518 0.677896293606E-01
33 0.568254615102 -0.336021797418E-01

34 0.508724300485 0.90083268973ZE-O
35 0.45053677132S 0.383389411307E-01
36 0.396897931668 -0.20q489964640
37 0.350856583176 0.16637142391

38 0.314481052305 0.4660TOZ49417E~0
34 0.288426718517 0.T512684554E-01
40 0.272106559834 -0.202d95007367
'1 0.264375373671 -0.6lZ330409063E-01

At--



Table 10 Effect of 8 closely spaced constraints on 30 db
Taylor pattern. Phase range [-11,11] (Fig. 20)

BEAM REFE4ENCs AT CENTRE CF 1R8AT
INITIAL PATTERN TaTLO0 eIGTEO
NUM6ER OF EOUAL SIOEL3BES 6
OEPT OF SZOEL03Ei 30.0
NUMER OF ELEME4TS 41
NUMBER OF FITTING P31,4T 41 1

O:PTH OF NULL - -90.
NULL INTERVAL - [0.220,0.360]
SCALING FACTR 1 o.000
EPSI(NULL CEPT" . SCLING FICTOR)t .5927E-03
CrOL(ABSOLUTE) - .1000E-05
FTOL(RELATI'vE) 1 0-0OE-O
CONSTRLNT NUMBER VALUE THETA

1 0.2200 12.71
2 0.200 13.83

0.2600 15.07
0.203 16 .26
0.3000 17.6

6 0.3200 13.66
7 0.3400 13-33
8 0.3500 21.10

1ITERVAL OF PiASE CmANGES =-PI,PI3

EXIT EO,'.uF - CJRRE'4T PJIT CANNOT BE IMPROVED JPSN.

O5JECTIVE FUNCTION = 8.93559.0-01
NORM OF TmE CJNSTRANT VIOLATICNS 1.5324370-15

NO. OF ITERATIONS = 6.
CPU TiME (STCS) 337.710
03JSISIVE FUNCT:'N : 936
GAIN4 -0.2231
NUMSER OF P.45E Pz;rTU8Ar T1O NS 4

AVERAGE P..ASE PERTURSATION 0.01000000,

I .EIGHTS PiASE CHANGES
1 0.264375373671 1.715L0277802
2 0.272136553834 0.1719565150070-01
3 0.28842t7135!7 0.365202494836
4 0.31-481052305 0.241433479456
5 0.353856583176 -0.143234344926
6 0.396897931668 -0.10390231l326
7 0.450536777328 0. 1843152667629-01
8 0.5087Z4360485 0. 3642,4677427;-Ol
9 0.568254615102 0.134648688360E-Oi

10 0.6265a1410548 -3.6111412 2 53E-O1
11 0.682261-19286 -0.111764987T11E-3
12 0.7348542710T9 3.43o65831i237S-01
13 0.78441,568475 0.4901 56101261E-01
1' 0.830863725839 -0.464135535412E-J2
15' 0.173621668158 -0.439465629348:-01
16 0.91160016904d 0.160118741loE-02
17 0.943565035459 0.3296 535531325-0,
18 0.96a566198776 1.37Z0 23211178E-32
19 0.986207431884 -0.2139536764380-01
20 0.996538198007 -0.233405317080E-01
21 1.000000000030 -U. 152831376268E-10
22 0.996538198007 0.239405313115e-01
23 0.986207.31884 0.2139 53675867z-01
24 0.96d566198776 -0.372023197428m-02
25 0.943565035459 -0.3296 53556T32E-01
26 0.911600'69048 -0.16311874373.-0 2
27 0.873621668158 0.4344656295120-01
28 0.330863725839 0.46.165536530E-02
29 0.784412668475 -0.4901561014OE-01
30 0.734854271079 -0.4366583137963-01
31 0.6822ni411286 0.1117649864150-01
32 0.625581410598 0.611181412467E-01
33 0.56d254615102 -0.134648688269E-01
34 0.5037Z4360485 -0.889424677400E-01
35 0.450536777328 -0.184315266773z-01
36 0.396897')31668 0.103902811332
37 0.350856383176 0.14i234344823
38 U.3144i052305 -0.2i1433479515
39 0.288426713517 -0.365202494843
40 0.272106559834 -0.171956515138E-01
41 0.26.375373671 -1.715107011

ed "= AAK .... ---. - - - I,,,,,,-.1 - , -, - .



Table 11(a) Effect of 4 constraints on 30 db Taylor pattern

Phase range [-II,Il] (Fig. 21)

3EAM EFQRENCE :T CENTRE OF kRRAY

INITIAL PATTERN TZTLOR WEIGHTED

NUMBER OF EQUAL SbOELOSES = 6

DEPTH OF SIDELDB:S = 30.0

NUMER OF ELEMENTS z 41

NUM9ER OF F:TTIN, POINTS 41

NUMBER OF CONSTRAINTS = .

OEPTH OF NULL = -90.

NULL INTERVAL = ca.zzo,0.280]

SCALING FACTUR = 1.000

EPSI(NULL DEPTH x SCALING FACTOR)= .59271-03

CTZL(ASL]LUTE) = .1000i-05

FTLIL(RELATIVE) .1000-06

CONSTRAINT NUMdER VALJE TETA

1 0.2200 12.71

2 2. 0 13.59

3 0.-600 15.07

0.2800 16.26

INTERVAL OF PHASZ CHANGES [-PI,PI]

OBJECTIVE FUNCTION 5.3029650-)1

NORM OF T"Z C0NST;A-tT VIOLATIONS d.4455330-16

No. OF ITERATIONS m 330

CPU TIIE (SECS) 157Z.7Z0

0SJEZT:VE FUNCTUON .5803
GAIN -0.1534
NUM8ER OF PHASE PERTUReATIONS 41

AV1RAGE R"Sl ?ZTUR3T8A7 0.00000000

I Wz:GHTS PHAISE CANGE3
1 O. i-375373671 1.4236189241.3
2 0.2?Z106559934 0.177d05834485
3 0.2842 1718517 0.514411043385E-01

0.314461052305 0.352360350719E-01
5 0.350a5653176 -O.21T133338953E-01
6 0.396897931668 0.160085375483E-02
7 0.4505367773E3 -0.377i1J454608E-01
a 0.50872V3504d5 -0.33Z34272OZZI-01
9 0.56825,615102 0.207684360305E-01

10 0.6Z6581810538 0.130280754370E-02
11 0.682261-19286 -0.708933298473E-02
12 0.73435'.71079 -0.34365093263E-0 3
13 0-781-112658475 -0.102593228359E-01
14 0.6308637Z5a39 0.208o1030435E-02
15 0.87362166a158 0.364i1 517075T-02
16 0.91160096904S -0.433866915221E-02
17 0.943565035459 0.9'6i26681744E-03
Id 0.968166198776 0.250024106192E-02
1i 0.966Z07'3188. -0.4286336:0197E-O2
20 0.996383198007 0.257385602214E-02
21 1.000000000000 0.29171351772E-14
22 0.99658a117igQQ -0. 257356222ZOE-o
23 0.936207431S84 0.'296336401 E-02
2. 0.9o856619d776 -0.25002'1.0619ZE-02
Z5 0 .9'3363035459 -0 .946326631740E-03
26 0.91160095j046 0.R3d669L5221E-02
27 0.87362166815d -0.364715170758E-02
2d 0.830363725839 -0.208619030436E-02
23 0.714412663475 0.102699228351E-01
30 0.734854271079 0.3.4565083265E-03
31 0.682261419286 0.7081332987iE-02
32 0.62658181059q -0.180280734370E-02
33 0.568254615102 -0.20768436000iE-01
3' 0.508724350'85 0.3323 2720Z 21E-O
35 0.450536777323 0.377313454603E-01
36 0.

3 9
6

9 7
931t68 -0. 160083754713-O2

37 0.35085.,583176 0.217133388952E-01
38 0.314481052305 -0.352380350720E-01
39 0.288626718517 -0.514411043387E-01
40 0.272106559a3f -0.177305834486
41 0.264373373671 -1.42561832443



Table 11(b) Effect of 4 constraints on 30 db Taylor pattern

Phase range [0,211] (Fig. 22)

4EAM REFERENCE AT CENTRE OF ARday

INITIAL PATTERN T.YLJR WEIGHTE

NUMBER OF EQUAL SrjELO3ES

DEPTH OF SIDELOBaS - 30.0

NUMBER OF ELZMENTS - 41

NUMBER OF FITTINO POINTS 41

NU48ER OF CONS TRAINTS 4

OEPTH OF NULL = -90.
NULL INTERVAL = C).Z:3,0.2s03

SCIL!NG FACTOR = 1.000

EPSI(NULL DEPTH x SCALIN,; FACTOR)= .5927E-03

CTOL(ABSOLUTE, = .10)05-05

FTOL(RELATIVE) z .LODGE-06

CONSTRAINT NJMJER VALJE THETA

1 0.2200 12.71

C02400 13.99
3 0.2b0o 15.07

0.1800 1o.26

INTERVAL OF PHASE CMANGES C [.3P I

OBJECTIVE FUNCTZSN - 1.3-37060-10

NORM OF THE CONSrRAINT VIOLATION = 1.419Z320-03

90. OF ITERATIONS 23

CPU TIME (SECS) 73.390

0oJECTIVE FUNCTION = 1.349

GAIN : -0.4411
NUMdER OF PHASE PERTJR5A1T N3 10

AVERAGE PHASE PERTJRSAFI3N J 3.34301072

WEIGHTS PHASI CHANGES

I 0.26,375373671 3.!6]ij4955i
3

0.27Z106553983 0.6,7509533072

3 0.28 ,42.718517 1.564259-5656

0.314441052305 0.420)114484 -

5 0 .30365083176 0.00C00000000E-0
O

6 0.396397931669 0.00000U000000E-00

7 0.450536777323 0.0,0000000000E00
8 0.508724360485 0.00000000000E-00

9 0.5o825'615102 0.000000000000E-00

10 0.626581810593 0.000000000100E+00

11 0.63226141'286 0.00C300000000E-00

12 0.734454271079 0.000000000000E+00

13 0.7344126o8475 0.000000000000E+00

14 0.830863725839 0.191025312272
15 0.873621668153 0.929570997621E-01

16 0.91160096903 0.00000 0000000.E-00

11 0.943565035459 0.000000000000E00

13 0.968566198775 0.00000000O000E*00
19 0.986207431884 0.000000000000E+09

20 0.996583138007 0.000000000000E-00

zi 1.000000000000 0.000000000000E-00

22 0.93658q198007 0.000000000000E.00

23 0.986207431984 0.000000000000E-00

24 0.968566118776 0.000O00000000E-00

25 0.943515035454 0.000000090000E+00

26 0.911600969048 0.144310656359

27 0.873621668158 0.56939'398705E-01

23 0.830d63725839 0.00000 3000000E00

29 0.794.12668475 0.000000000000E.00

30 0.734354271073 0.0000000000OOE.00

31 0.6322t 1419286 O.O000000000E.00

32 0.626581810598 0.000000000000E-
0 0

33 0. 548254615102 0.00000000000OO0

34 0.5087243t0485 0.1i3o18278172

35 0.450536777328 0.0000000000005+00

36 0.396897931668 0.000000000000E80J

37 0.350356583176 0.000000000000E-00

38 0.314431052305 0.0O0J00000000E+00
33 0.268426718517 2.01154099193

40 0.272106539334 0.000000000000E+00

41 0.264375373671 0.Ou0000000000E00

I! ....


